高级教程¶
本教程深入探讨项目的高级功能和复杂应用场景。
概述¶
本教程适合已经掌握基础用法的用户,将介绍: - 高级配置和自定义 - 性能优化技巧 - 扩展开发指南 - 集成第三方服务
高级配置¶
自定义插件系统¶
from your_project.plugin import PluginManager, BasePlugin
# 创建自定义插件
class CustomPlugin(BasePlugin):
def __init__(self, config):
super().__init__(config)
self.name = "CustomPlugin"
def execute(self, context):
# 自定义逻辑
result = self._process_context(context)
return result
def _process_context(self, context):
# 处理上下文
return {"processed": True, "data": context}
# 注册插件
manager = PluginManager()
manager.register_plugin(CustomPlugin)
manager.load_plugins()
# 使用插件
results = manager.execute_all({"test": "data"})
配置多环境部署¶
创建环境特定的配置文件:
# config.production.yaml
database:
host: "prod-db.example.com"
port: 5432
ssl: true
cache:
redis:
host: "redis.example.com"
port: 6379
# config.development.yaml
database:
host: "localhost"
port: 5432
ssl: false
cache:
redis:
host: "localhost"
port: 6379
使用环境配置:
export APP_ENV=production
python app.py
性能优化¶
缓存策略¶
from your_project.cache import LRUCache, RedisCache
# 使用LRU缓存
cache = LRUCache(maxsize=1000)
@cache.memoize(ttl=300) # 缓存5分钟
def expensive_operation(x, y):
# 耗时计算
time.sleep(2)
return x * y
# 使用Redis分布式缓存
redis_cache = RedisCache(
host="localhost",
port=6379,
db=0,
ttl=3600 # 1小时过期
)
异步处理¶
import asyncio
from your_project.async_processor import AsyncProcessor
async def process_batch(items):
processor = AsyncProcessor()
# 并发处理
tasks = [processor.process(item) for item in items]
results = await asyncio.gather(*tasks, return_exceptions=True)
# 处理结果
successful = [r for r in results if not isinstance(r, Exception)]
failed = [r for r in results if isinstance(r, Exception)]
return successful, failed
# 运行异步任务
async def main():
items = [1, 2, 3, 4, 5]
successful, failed = await process_batch(items)
print(f"成功: {len(successful)}, 失败: {len(failed)}")
asyncio.run(main())
扩展开发¶
创建自定义模块¶
- 创建模块文件
extensions/my_module.py:
from your_project.base import BaseExtension
class MyExtension(BaseExtension):
"""自定义扩展模块"""
def __init__(self, config):
super().__init__(config)
self.version = "1.0.0"
def setup(self):
"""初始化扩展"""
self.logger.info("设置MyExtension")
def teardown(self):
"""清理扩展"""
self.logger.info("清理MyExtension")
def custom_method(self, data):
"""自定义方法"""
return {"processed": data, "extension": "my_module"}
- 注册扩展:
from your_project.registry import ExtensionRegistry
from extensions.my_module import MyExtension
registry = ExtensionRegistry()
registry.register("my_extension", MyExtension)
集成第三方服务¶
集成消息队列¶
from your_project.integrations import MessageQueue
# 连接到RabbitMQ
mq = MessageQueue(
host="localhost",
port=5672,
username="guest",
password="guest",
queue="task_queue"
)
# 发送消息
mq.publish({"task": "process", "data": "example"})
# 消费消息
def callback(message):
print(f"收到消息: {message}")
# 处理消息
return True
mq.consume(callback)
集成监控系统¶
from your_project.monitoring import MetricsCollector
# 创建指标收集器
metrics = MetricsCollector(
prometheus_url="http://localhost:9090",
application_name="myapp"
)
# 记录指标
@metrics.timer("function_execution_time")
def business_logic():
# 业务逻辑
pass
# 自定义指标
metrics.gauge("active_users", 150)
metrics.increment("requests_processed")
安全最佳实践¶
安全配置¶
security:
# 启用HTTPS
ssl:
enabled: true
cert: "/path/to/cert.pem"
key: "/path/to/key.pem"
# 认证与授权
auth:
jwt_secret: "your-secret-key"
token_expiry: 3600
# 防止常见攻击
protection:
csrf: true
xss: true
sql_injection: true
安全审计¶
# 运行安全扫描
python security_audit.py --scan
# 检查依赖漏洞
pip-audit
# 静态代码安全分析
bandit -r your_project/
故障排除与调试¶
高级调试技巧¶
import logging
from your_project.debug import Debugger
# 设置详细日志
logging.basicConfig(level=logging.DEBUG)
# 使用交互式调试器
debugger = Debugger()
debugger.enable_profiling()
# 性能分析
with debugger.profile("critical_section"):
# 关键代码段
perform_critical_operation()
# 生成性能报告
debugger.generate_report("performance_report.html")
监控与告警¶
from your_project.alerting import AlertManager
alert_manager = AlertManager(
slack_webhook="https://hooks.slack.com/services/...",
email_settings={"smtp_server": "smtp.example.com"}
)
# 设置告警规则
alert_manager.add_rule(
name="high_error_rate",
condition=lambda metrics: metrics.error_rate > 0.1,
action=alert_manager.send_slack_alert
)
# 触发告警
alert_manager.check_and_alert(current_metrics)